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Abstract—The maximal correlation coefficient is a well-
established generalization of the Pearson correlation coefficient
for measuring non-linear dependence between random variables.
It is appealing from a theoretical standpoint, satisfying Rényi’s
axioms for measures of dependence. It is also attractive from
a computational point of view due to the celebrated alternating
conditional expectation algorithm, allowing to compute its empir-
ical version directly from observed data. Nevertheless, from the
outset, it was recognized that the maximal correlation coefficient
suffers from some fundamental deficiencies, limiting its usefulness
as an indicator of estimation quality. Another well-known mea-
sure of dependence is the correlation ratio but it too suffers from
some drawbacks. Specifically, the maximal correlation coefficient
equals one too easily whereas the correlation ratio equals zero too
easily. The present work recounts some attempts that have been
made in the past to alter the definition of the maximal correlation
coefficient in order to overcome its weaknesses and then proceeds
to suggest a natural variant of the maximal correlation coefficient.
The proposed dependence measure at the same time resolves the
major weakness of the correlation ratio measure and may be
viewed as a bridge between the two classical measures.

I. INTRODUCTION

Pearson’s correlation coefficient is a measure indicating how

well one can approximate (estimate in an average least squares

sense) a (response) random variable Y as a linear (more

precisely affine) function of a (predictor/observed) random

variable X , i.e., as Y = aX + b.1 It is given by

ρ(X ↔ Y ) =
Cov(X,Y)

√

var(X)
√

var(Y )
. (1)

The coefficient is symmetric in X and Y so it just as well

measures how well one can approximate X as a linear function

of Y .

The correlation ratio of Y on X , also suggested by Pear-

son (see, e.g., [1]), similarly measures how well one can

approximate Y as a general admissible function of X , i.e.,

as Y = f(X).2 Specifically, the correlation ratio of Y on X
is given by

θ(X → Y ) =

√

var(E[Y |X])

var(Y )
=

√

1−
E[var(Y |X)]

var(Y )
. (2)

The correlation ratio can also be expressed as

θ(X → Y ) = sup
f

ρ(f(X) ↔ Y ),

1We assume that both random variables have finite and positive variance.
2We define a function f(·) to be admissible w.r.t. the random variable X

if it is a Borel-measurable real-valued function such that E[f(X)] = 0 and
it has finite and positive variance.

where the supremum is taken over all (admissible) functions

f (see, e.g., [2]). This measure is naturally nonsymmetric.

A drawback of the correlation ratio is that it “equals zero

too easily”, i.e., it can vanish even when the variables are

dependent.

The Hirschfeld-Gebelein-Rényi maximal correlation coeffi-

cient [3]–[5] measures the maximal (Pearson) correlation that

can be attained by transforming the pair X,Y into random

variables X ′ = g(X) and Y ′ = f(Y ); that is, how well

X ′ = aY ′ + b holds in a mean squared error sense for

some pair of functions f and g. More precisely, the maximum

correlation coefficient is defined as the supremum over all

(admissible) functions f, g of the correlation between f(X)
and g(Y ):

ρ∗∗max(X ↔ Y ) = sup
f,g

ρ(f(X) ↔ g(Y )). (3)

This measure is again symmetric by definition. We use the

superscript “**” to indicate that both functions (applied to the

response and the predictor random variables) need not satisfy

any restrictions beyond being admissible.

The maximal correlation coefficient has some very pleasing

properties. In particular, in [5], Rényi put forth a set of

seven axioms deemed natural to require of a measure of

dependence between a pair of random variables. He further

established that the maximal correlation coefficient satisfies

the full set of axioms. In particular, unlike the correlation ratio,

the maximal correlation coefficient “does not equal zero too

easily”. Further, unlike the correlation ratio, it is symmetric,

which was set as one of the axioms. Nonetheless, this comes at

the price of “equaling one too easily” as exemplified below.3

Rényi’s seminal work inspired substantial subsequent work

aiming to identify other measures of dependence satisfying the

set of axioms. We refer the reader to [6] for a survey of some

of these.

Another appealing trait of the maximal correlation coeffi-

cient, greatly contributing to its popularity, is its relation to

the mean square error and hence to a Euclidean geometric

framework. In particular, it is readily computable numerically

via the alternating conditional expectation (ACE) algorithm

of Breiman and Friedman [7]. Moreover, and as recalled in

the sequel, the ACE algorithm naturally extends to cover

linear estimation of a (transformed) random variable from a

component-wise transformed random vector.

3See also footnote 3 in [5].



Despite its elegance and it being amenable to computation,

the maximal correlation coefficient suffers from some signif-

icant deficiencies as was recognized since its inception. As

noted, it “equals one too easily”; see, e.g. [8] and [9]. In fact,

it can equal one even for two random variables that are nearly

independent (as also demonstrated below).

Disconcerted by this behavior of the maximal correlation

coefficient, Kimeldorf and Sampson [9] proposed to alter its

definition, introducing monotonicity constraints. They defined

a monotone dependence measure as follows.

ρmm
max(X ↔ Y ) = sup

f,g

ρ(f(X) ↔ g(Y )), (4)

where f and g are not only admissible but also monotone.

Nevertheless, as stated in [9], while the imposed constraints

somewhat mitigate the “easiness of attaining the value of one”,

the measure (4) still can equal one for a pair of random

variables that are not completely dependent.

The definition of the monotone dependence measure (4) is

unsatisfactory in two respects. The first is that is imposes

symmetric constraints on the two transformations. As the

process of estimation/prediction (and more generally infer-

ence) is directional, if the goal of the dependence measure

is to characterize how well one can achieve the latter tasks,

there is no apparent reason to impose any restriction on the

transformation applied to the observed data. In this respect, it

is worth quoting the incisive comments (in reference to [10])

of Hastie and Tibshirani [11]:

“A monotone restriction makes sense for a response trans-

formation because it is necessary to allow predictions of the

response from the estimated model. On the other hand, why

restrict predictor transformations. . . ?”

The second and more subtle deficiency of the monotone

dependence measure of Kimeldorf and Sampson (as well as

the semi-monotone variant suggested by Hastie and Tibshirani)

is that when it comes to the response variable, the requirement

that the transformation be monotone is not strong enough.

The goal of the present work is first to reiterate some of

the known drawbacks of both the correlation ratio and of the

maximal correlation coefficient, and then to suggest a possible

resolution. In particular, we demonstrate that while allowing a

transformation to be applied to the response variable is impor-

tant, it is not sufficient to require that it be monotonic. Rather,

one must strengthen the required “degree” of monotonicity.

Specifically, we introduce the notion of κ-monotonicity and

argue in favor of constraining (only) the transformation applied

to the response random variable to be κ-monotonic, leading

to a proposed semi-κ-monotone maximal correlation measure.

The parameter κ dictates a minimal and maximal slope that

the function applied to the response variable must maintain.

We show that requiring that 0 < κ < 1 yields a measure

that does not suffer from the drawbacks of neither the maximal

correlation coefficient nor from those of the correlation ratio.

The correlation ratio and the measure alluded to by Hastie and

Tibshirani can be viewed as extreme cases of the suggested

measure, setting κ to be 1 or 0, respectively. The proposed

measure satisfies a set of modified Rényi axioms that does

not sacrifice the natural requirements of capturing both inde-

pendence and complete dependence.

Finally, as the usefulness of the maximal correlation co-

efficient is due, in part, to it being readily computable, we

suggest modifications to the ACE algorithm and exemplify

the resulting performance via several examples.

II. SHORTCOMINGS OF THE CORRELATION RATIO AND

MAXIMAL CORRELATION COEFFICIENT AND A PROPOSED

RESOLUTION

As a simple example, consider two (sequences of) random

variables that share only the least significant bit:

X(N) = C +

N
∑

i=1

Ai2
i

Y (N) = C +
N
∑

i=1

Bi2
i,

where Ai, Bi, C are mutually independent random variables,

all taking the values 0 or 1 with equal probability. Clearly,

applying modulo 2 to both variables yields a correlation of

one. This seems quite unsatisfactory if our goal is estimation

subject to any reasonable distortion metric as the two random

variables become virtually independent as N grows. Specifi-

cally, the pair (X(N)/2N , Y (N)/2N ) converges in distribution

to a uniform distribution over the unit square.

Remark 1. It should be noted in this respect that the maximal

correlation coefficient is a good measure with a different goal

in mind. It quantifies to what extent two random variables

share any common “features”.

A natural and quite satisfying measure of directional de-

pendence between random variables, that takes the value of

one only when the response variable is a function of the

predictor variable, is the correlation ratio defined in (2). While

Rényi objected to the correlation ratio due to its asymmetric

nature, as was noted in [8], when our goal is asymmetric (i.e.,

estimating Y from X), there is no reason for requiring that

the measure be symmetric.

Nonetheless, in some cases one does not have strong

grounds to assume a particular “parameterization” of the

desired (response) random variable. Thus, not allowing to

apply any transformation to the response variable, as is the

case of the correlation ratio, may be too restrictive. In other

words, in the absence of a preferred “natural” parameterization

of the response variable, one may consider choosing a strictly

monotone transformation (change of variables) so as to make it

easier to estimate. A more severe drawback of the correlation

ratio is that it vanishes too easily, i.e., it can be zero for two

dependent random variables.

In light of these considerations, we propose the following

modification to the definition of the maximal correlation

coefficient.

Definition 1. For 0 ≤ κ ≤ 1, a function f is said to be

κ-increasing, if for all x2 ≥ x1:

f(x2)− f(x1) ≥ κ(x2 − x1) ,

f(x2)− f(x1) ≤
1

κ
(x2 − x1). (5)



Definition 2. For a given 0 < κ < 1, the semi-κ-monotone

maximal correlation measure is defined as

ρ∗mκ

max (X → Y ) = sup
f,g

ρ(f(X) ↔ g(Y )) (6)

where and the supremum is taken over all admissible functions

f , and over κ-increasing admissible functions g.

Remark 2. Limiting g to be κ-increasing implies that, in

particular, it is invertible, which is a natural requirement.

Further, the set of κ-increasing admissible functions is closed.

We further note that the value of κ controls how far the

measure can deviate from the correlation ratio.

A. The vector observation case

Let X = (X1, . . . , Xp) be a vector of predictor variables.

The maximal correlation coefficient becomes

ρ∗∗max(X ↔ Y ) = sup
f,g

ρ(f(X) ↔ g(Y )) (7)

where the supremum is over all admissible functions.

Following Breiman and Friedman [7], we may also consider

a simplified (quasi-additive) relationship between Y and X

where f(X) is restricted to be of the form f(X) =
∑

i fi(Xi).
In [7], conditions for the existence of optimal transformations

{fi}, g such that the supremum is attained are given, and

it is shown that under these conditions the ACE algorithm

converges to the optimal transformations.

Going back to the rationale for requiring κ-monotonicity,

one may object to the example in (5) as being artificial

and argue that the maximum correlation coefficient merely

captures whatever dependence there is between the random

variables. In this respect, it is worthwhile quoting Breiman

[12] (commenting on [10]):

“I only know of infrequent cases in which I would insist

on monotone transformations. Finding non-monotonicity can

lead to interesting scientific discoveries. If the appropriate

transformation is monotone, then the fitted spline functions

(or ACE transformations) will produce close to a monotonic

transformation. So it is hard to see what there is to gain in

the imposition of monotonicity.”

However, as exemplified in Section V, the problematic

nature of the maximal correlation coefficient becomes more

pronounced when considering the multi-variate case and so

does the necessity of restricting the transformation applied to

the response variable (only) to be monotone.

III. MODIFIED RÉNYI AXIOMS

We follow the approach of Hall [8] in defining an asymmet-

ric variant of the Rényi axioms; more precisely, we adopt a

slight variation on the somewhat stronger version formulated

by Li [13]. However, unlike both of these works, when it

comes to putting forward a candidate dependence measure

satisfying the modified axioms, we adhere to a mean square

error methodology.

Assume r(X → Y ) is to measure the degree of dependence

of Y on X . Then we require that it satisfy the following:

(a) r(X → Y ) is defined for all non-constant random vari-

ables X,Y having finite variance.4

(b) r(X → Y ) may not be equal to r(Y → X).
(c) 0 ≤ r(X → Y ) ≤ 1.

(d) r(X → Y ) = 0 if and only if X,Y are independent.

(e) r(X → Y ) = 1 if and only if Y = f(X) almost surely

for some admissible function f .

(f) If f is an admissible bijection on R, then r(f(X) →
Y ) = r(X → Y )

(g) If X,Y are jointly normal with correlation coefficient ρ,

then r(X → Y ) = |ρ|.

We first note that the correlation ratio satisfies all of the

modified axioms except for the “only if” part of axiom (d). We

next observe that for absolutely continuous (or discrete) dis-

tributions, the semi-κ-monotone maximal correlation measure

of Definition 6 satisfies the proposed axioms.

It is readily verified that axioms (a), (b) and (c) hold.

To show that axiom (d) holds, we note that if X,Y are

independent, then obviously ρ∗mκ

max (X → Y ) = 0, as so is even

ρ∗∗max(X ↔ Y ). As for the other direction, we first note that it

suffices to consider the case where the correlation ratio equals

0 and X,Y are dependent. Since the correlation ratio is 0, it

follows from (2) that E[Y |X] ≡ const (in the mean square

sense), i.e.,
∫

p(y|x)ydy = const.

We may break the symmetry of g(y) = y by defining, e.g.,

ga,κ(y) =

{

y y ≥ a

κy y < a
.

Consider two values of x1 and x2 for which the functions

p(y|xi) are not identical (as functions of y), as must exist by

the assumption of dependence. Let a be a value such that
∫ a

p(y|x1)ydy 6=

∫ a

p(y|x2)ydy. (8)

Without loss of generality, we may assume that the left hand

side is smaller than the right hand side (we may rename x1

and x2). Recalling that κ < 1, it follows that
∫

p(y|x1)ga(y)dy >

∫

p(y|x2)ga(y)dy (9)

Thus,

E[ga(Y )|X = x1] 6= E[ga(Y )|X = x2]

and hence the correlation ratio of Y ′ = ga(Y ) on X is non-

zero, giving a lower bound for the semi-κ-monotone maximal

correlation measure between Y and X .

To show that axiom (e) holds, we first note that if Y = f(X)
(almost surely), then clearly ρ∗mκ

max (X → Y ) = 1, as this is the

case even for the correlation ratio. To show that the opposite

direction holds, we note that it can be shown that the supre-

mum in (6) is attained. Recalling that if ρ∗mκ

max (X → Y ) = 1,

then by the properties of the Pearson correlation coefficient,

there is a perfect linear regression between g(Y ) and f ′(X)

4In [13], the first axiom only requires that r(X → Y ) be defined for
continuous random variables X,Y .



(g, f ′ being maximizing functions of the measure). Hence, we

have g(Y ) = af ′(X) + b where g is an increasing function

with slope no smaller than κ. Since κ is strictly positive, it

follows that not only is g invertible, but also g−1(Y ) has finite

variance (since the slope of g−1(Y ) is at most 1
κ

and Y has

finite variance). Therefore, we have Y = g−1(af ′(X) + b).
Denoting f(X) = g−1(af ′(X) + b), we note that if f ′ is

admissible, then so is f .

Axiom (f) trivially holds. To show that axiom (g) holds,

we recall that it is well known that when X,Y are jointly

normal with correlation coefficient ρ, then (see, e.g., [14] and

[15]) ρ∗∗max(X ↔ Y ) = |ρ| and is achieved taking g(y) = y (a

κ-increasing function) and f(x) = x or f(x) = −x. Hence,

ρ∗mκ

max (X → Y ) = ρ∗∗max(X ↔ Y ) = |ρ|.

We note that the restriction 0 < κ < 1 is necessary.

Specifically, for κ = 1, axiom (d) is not satisfied whereas

for κ = 0, axiom (e) is not satisfied.

Finally, we note that one may define other dependence

measures satisfying modified Rényi axioms, most notably via

the theory of copulas (which is inherently related to monotone

constraints); e.g., a symmetric measure is given in [16] and a

directional one is given in [13]. Nonetheless, we believe that

the proposed measure has the advantage of being closely tied

to linear regression methods and geometric considerations.

IV. MODIFIED ACE ALGORITHM

We begin by presenting a modification of the ACE algorithm

with the goal of computing the semi-0-monotone maximal

correlation measure ρ∗m0

max(X → Y ), restricting the function

applied to the response variable only to be weakly monotone.

As we do not know of a simple means to maximize correla-

tion subject to slope constraints, we do not have an algorithm

for computing the semi-κ-monotone maximal correlation mea-

sure. Instead, we apply regularization to the outcome of the

modified ACE algorithm as described in Section IV-B.

A. Evaluating semi-0-monotone maximal correlation

We describe a modification of the ACE algorithm to

compute the semi-0-monotone maximal correlation measure

ρ∗m0

max(X → Y ) for the case of a single variate. It is readily

seen that the correlation increases in each iteration of the

algorithm and thus converges but we do not pursue proving

optimality.

Following in the footsteps of [7], recall that the space of all

random variables with finite variance is a Hilbert space, which

we denote by H2, with the usual definition of the inner product

< X,Y >= E[XY ], for X,Y ∈ H2. We may further define

the subspace H2(X) as the set of all random variables that

correspond to an admissible function of X . We similarly define

the subspace H2(Y ). Now, if we further limit the functions

applied to Y to be non-decreasing, we obtain a closed and

convex subset of the Hilbert space H2(Y ). We denote this set

by M0(Y ).
Denoting by PA(Y ) the orthogonal projection of Y onto a

closed convex set A,5 the modified ACE algorithm is described

in Algorithm 1 for the case of a single predictor variable.

5Note that PH2(X) (g(Y )) = E [g(Y ) |X].

Algorithm 1

1: procedure CALCULATE-SEMI-0-MONOTONE

2: Set g(Y ) = Y/‖Y ‖;

3: while e2(g, f) decreases do

4: f ′(X) = PH2(X) (g(Y ))
5: replace f(X) with f ′(X)
6: g′(Y ) = PM0(Y ) (f(X))
7: replace g(Y ) with g′(Y )/‖g′(Y )‖

8: End modified ACE

B. Regularized ACE algorithm

We may enforce that the transformation g satisfies κ-

monotonicity by applying the following regularization. Given a

monotone transformation g (e.g., the outcome of Algorithm 1),

do:6

g′(Y ) = g−1(Y ) + κ · Y

g(Y ) = g′−1(Y ) + κ · Y

That is, step 8 in Algorithm 1 becomes step 9 and the

regularization is performed as step 8 (outside the while-loop).

C. Multi-variate predictor

The modified ACE algorithms for the case of a multi-

variate predictor are simple extensions of Algorithm 1 and

its regularized variant; the details can be found in [17].

V. NUMERICAL EXAMPLES

We first demonstrate the advantage of the semi-0-monotone

maximal correlation measure over the standard maximal cor-

relation measure, in the context of estimation of a random

variable Y from a random vector X. We then demonstrate why

taking κ = 0 is not sufficient in general, and show heuristically

that the regularized variant of the modified ACE algorithm

yields more satisfying results.

For simulating ACE, we used the ACE Matlab code pro-

vided by the authors of [18]. To limit g to be a monotonic

function, we used isotonic regression.

A. Example 1 - Multi-variate predictor

Assume that the response variable Y is distributed uni-

formly over the interval [0, 1]. Assume we have two predictor

variables

X1 = mod(Y, 0.2) + N1

X2 = Y 3 +N2,

where N1, N2 are independent zero-mean Gaussian variables

with σ2
N1

= 0.01 and σ2
N2

= 0.2.

As can be seen from Figure 1, the ACE algorithm (comput-

ing maximal correlation) essentially chooses to ignore X2 and

applies similar functions as in the case of running ACE only

on Y and X1 (the outcome of running ACE on Y and X1

and on Y and X2 can be found in [17]). While, indeed, this

maximizes the correlation coefficient, it is far from satisfying

from an estimation viewpoint.

6Note that this method of regularization actually forces the slope to be
between κ and 1/κ+ κ.
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Fig. 1. Example 1: Running ACE on Y , X1 and X2.

In contrast, as can be seen from Figure 2, running Algo-

rithm 1 (for the semi-0-monotone maximal correlation mea-

sure) results in essentially “choosing to ignore” X1 (even

though it suffers from a lower noise level) and basing the

estimation on X2. This yields similar results to running the

ACE algorithm on Y and X2 only.
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Fig. 2. Example 1: Running modified ACE (Algorithm 1) on Y , X1 and X2

with κ = 0.

B. Example 2 - Semi-0-monotonicity is insufficient

To illustrate why it does not suffice to limit g to be merely

monotone, consider the following example. Assume that the

response Y ∼ Unif([−10, 10]), N1 ∼ Unif([−1, 1]) and is

independent of Y , and that

X =

{

X = Y Y > 9

X = N1 otherwise
.

Limiting g only to be monotone (with no slope limitations)

results in a correlation value of 1 since the optimal solution

is to set g(y) = 0 in the region it cannot be estimated and

g(y) = y otherwise (and then apply normalization). Clearly,

the function g is non-invertible.

Next, we ran the regularized ACE algorithm, enforcing a

minimal slope of κ = 0.1. The results are depicted in Figure 3.

This example sheds light on the trade-off that exists when
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Fig. 3. Example 2: Running regularized modified ACE on Y , X with κ = 0.1

setting the value of κ. Setting κ to be large limits the possible

gain over the correlation ratio whereas setting it too low risks

overemphasizing regions where the noise is weaker.
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